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3.1	 �Introduction

Adipose tissue, for a long time, has been consid-
ered merely a storage of excess energy, but more 
recent evidence has helped shed some light on its 
role [1], comprising energy balance storage [2], 
as well as regulating bone metabolism, hemato-
poiesis, and the inflammatory response [3].

Adipose is a highly vascularized structure, 
composed of a heterogeneous mixture of cell 
populations, primarily derived from interlobular 
and perivascular connective tissues, consisting 
of mature adipocytes, preadipocytes, fibroblasts, 
vascular smooth muscle cells, endothelial cells, 
resident monocytes/macrophages, and lympho-
cytes, as well as progenitor cells and mesenchy-
mal stem/stromal cells (MSCs). The presence of 
MSCs within this tissue (ASCs, adipose-derived 
stem/stromal cells) has recently drawn signifi-
cant clinical attention due to their purported 
paracrine effects and multipotent differentiation 
capacity [4]. To date, its use as source of pro-

regenerative cells has been successfully reported 
in a variety of preclinical and clinical applica-
tions, including musculoskeletal conditions, car-
diac diseases, ischemia, amyotrophic lateral 
sclerosis, diabetes, and Alzheimer’s and 
Parkinson’s diseases [5]. Considering the prom-
ising results achieved so far, a wide array of lab-
driven technologies is actively studied to undergo 
the process of a more efficient translation into 
the clinical setting.

Adipose tissue either can be used to isolate 
ASCs or can be processed at the point of care to 
obtain adipose-derived products. In the former 
case, ASCs are efficiently isolated by tissue enzy-
matic digestion and then culture expanded as 
adherent monolayers. In this setting, ASCs are 
generally consistent with the International 
Society for Cellular Therapy (ISCT) accepted 
attributes mesenchymal stromal cell populations 
(MSCs). Differently, adipose tissue can be pro-
cessed at the point of care into cell suspensions or 
microfragments that have been commonly 
referred to as stromal vascular fraction (SVF) or 
microfragmented adipose tissue (microfat), 
respectively [6].

Both these strategies for the use of adipose-
derived therapeutic cellular products have advan-
tages and pitfalls. The approach based on cultured 
ASCs provides a standardized cell population of 
stem/stromal cells, compared to the use of SVF 
or microfat, in which different cell types (i.e., 
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endothelial cells, progenitor cells, and leuko-
cytes) are represented together with mesenchy-
mal stem/stromal cells [7]. On the other hand, the 
use of microfat or SVF has the theoretical and 
practical advantages of providing a point of care 
therapy that does not imply the cost and risk of 
in vitro culture expansion. Moreover, preparation 
of SVF and microfat may preserve the tissue 
native niche, which is composed by different cell 
types including stem and progenitor cells.

Still many controversial points animate the 
debate on the most effective procedure. To shed 
some light, in the next paragraphs, a more in-
depth description of both cells and techniques as 
well as applications will be discussed, with a final 
focus on orthopedic-related tissues and diseases.

3.2	 �Adipose-Derived Stem/
Stromal Cells and Adipose-
Derived Products: Two Sides 
of the Same Moon

3.2.1	 �SVF and Microfat

Although they have some similarities, including 
being prepared at the point of care and the char-
acteristic of preserving the tissue niche, SVF and 
microfat also present some substantial 
differences.

The adipose tissue SVF is defined as a hetero-
geneous population of freshly isolated cells com-
prising all the different types of cells residing in 
the tissue such as fibroblasts, preadipocytes, vas-
cular smooth muscle cells, endothelial cells, resi-
dent monocytes/macrophages, and lymphocytes, 
except mature adipocytes. The process to obtain 
SVF may exceed the definition of “minimal 
manipulation” as it is frequently based on enzy-
matic tissue digestion. However mechanical dis-
sociation, albeit less efficient in terms of cell 
recovery, is currently favored mainly for regula-
tory reasons. In contrast, microfat, obtained by 
mechanical processing only, is composed of clus-
ters of blood- and lipids-free adipose tissue rang-
ing from tens to few hundred micrometers in 
diameter, containing all the adipose tissue cells, 
including adipocytes, within their native niche [8, 

9]. Moreover, microfat, beyond preserving the 
cell composition, also preserves the tissue micro-
architecture [10]. Borrowing the concept from 
the world of bone marrow and bone marrow con-
centrate (BMAC), it is quite common to refer to 
these adipose-derived products as “cell concen-
trates.” Actually, this is improper since, espe-
cially for microfat, the production process is not 
designed to concentrate any population type, but 
rather to eliminate blood and lipid residuals 
known to be pro-inflammatory agents [10]. Both 
the SVF and microfat have similar nucleated cell 
number per gram of product, as well as similar 
proliferation abilities and the expression of the 
typical MSC marker CD90; nevertheless, the 
proportion of cells positive for CD34 and CD45 
appears to be higher in SVF compared to micro-
fat [11, 12], underlying the higher blood contami-
nation in SVF.

Both products have shown anti-inflammatory 
and immunomodulatory potential, and reparative 
effects in vivo [13], and safety in a growing num-
ber of clinical trials [14–16], including musculo-
skeletal diseases. Moreover, the undisputable 
practical advantages associated to the use of SVF 
and microfat over culture-expanded ASCs have 
made them very popular among the orthopedic 
community, as revealed by the increasing number 
of publications reporting the results of their 
application [17].

3.2.2	 �Culture-Expanded Adipose-
Derived Stem Cells (ASCs)

Within the SVF, not all the cells are likely to 
have a therapeutic effect [18]. Among them 
ASCs have a role of paramount importance in 
regenerative medicine, and therefore many ther-
apeutic approaches are based on the use of these 
cells only. A small fraction of the adipose tissue 
is in fact represented by ASCs that can be iso-
lated and induced to proliferate in culture to gen-
erate expanded populations. The process starts 
with the enzymatic isolation of the SVF, and 
then it further proceeds with in vitro expansion 
in appropriate culture media leading to the loss 
of the native adipose structure and the achieve-
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ment of a homogeneous population of expanded 
cells that can be rigorously characterized in 
terms of cell markers, morphology, and secre-
tory profiles. Interestingly, adipose tissue con-
tains up to 3% of MSCs, whereas in bone marrow 
it is reported between 0.002% and 0.02% [19]. 
The identification of the heterogeneous stem/
stromal cell types and native phenotypes in their 
environment is still a matter of debate [20]. 
There is growing evidence supporting the 
hypothesis that these cells and more in general 
MSCs reside in a perivascular location. 
Consistently, the ability of MSCs to stabilize 
blood vessels and contribute to tissue homeosta-
sis in both physiological and injury conditions 
has also led some authors to propose that MSCs 
are a subpopulation of pericytes [21].

Culture-expanded ASCs match the criteria 
reported in the ISCT guidelines aimed to stan-
dardize the concept and metrics used for culture-
expanded products and the appropriate use of the 
term MSCs. The definition and required attri-
butes for MSC included the adherence to plastic 
support, the capacity for tri-lineage differentia-
tion (adipocyte, chondroblast, osteoblast) 
in  vitro, the  expression of cell surface markers 
(CD73, CD90, and CD105), but the lack of cell 
surface markers associated with hematopoietic 
stem cells and progenitors (CD45, CD34, CD14 
or CD11b, CD79a or CD19, and HLA-DR) [22]. 
More recently, other potentially useful markers 
have been proposed, like positivity for CD13, 
CD29, and CD44 and absence of CD31 and 
CD235a [23]. Further, cell size and granularity, 
telomere length, senescence status, trophic factor 
secretion, and immunomodulation ability  [24, 
25] can also be evaluated. The opportunity to 
characterize ASCs, in theory, should lead to more 
reproducible product assessment and outcomes 
[26]. However, since the techniques of expansion 
can affect the relative proportion and features of 
the expanded cell populations [27, 28], individual 
batches of ASCs can vary significantly with 
respect to these metrics. All the aforementioned 
are attributes that must be considered as predic-
tive of the potency of any culture-expanded cell 
population that may be used in regenerative med-
icine [29]. Therefore, being able to optimize the 

population attributes, including the secretion of 
soluble factors, might allow the development of 
tailored cell-based protocols to achieve the 
desired result.

However, this strategy requires a GMP facility 
and a minimum of two procedures (harvest and 
administration) to complete the treatment, 
increasing the cost for both patients and NHS or 
other payors.

3.3	 �Influence of Patient-Specific 
Factors on Adipose-Derived 
Cells and Products 

The tissue source selection, processing methods, 
injection techniques, cell composition, and cell 
dose have been extensively studied for years, and 
the efforts of researchers are still aimed at their 
standardization. Nevertheless, the variability in 
terms of outcome suggests the presence of 
patient-specific factors such as age, body mass 
index (BMI), gender, and harvest sites as con-
founding variables in the evaluation.

Studies have shown a slight decrease in the 
overall yield of nucleated cells with increasing 
age [30], as well as a significant decrease in the 
proliferative and differentiation capacities of 
culture-expanded ASCs [31]. This result is in 
keeping with studies on bone marrow-derived 
expanded MSCs where age is negatively corre-
lated with cell viability and overall potential [32]. 
Nevertheless, despite a lower yield of pro-
regenerative cells per gram of tissue, the autolo-
gous transplantation of ASCs seems to be still a 
feasible option for elderly patients [33].

A higher BMI has been associated with a 
reduced number of viable mature adipocytes per 
gram of tissue, a lower differentiation capacity of 
the culture-expanded ASCs, reduced capacity of 
cell migration, and angiogenic and proliferative 
abilities [30], probably due to the low oxygen 
condition and inflammatory conditions observed 
in adipose tissue of obese patients. Interestingly, 
the effect of BMI on cell performance can be 
reverted. Bariatric surgery and diet-induced long-
term calorie restriction could improve cultured 
ASCs profile, with reduced DNA damage, 

3  Adipose-Derived Stem/Stromal Cells, Stromal Vascular Fraction, and Microfragmented Adipose Tissue



50

improved viability, and extended replicative life 
span [34]. This evidence is in line with studies 
reporting a positive connection between weight 
loss and reduced inflammation [35].

The role of gender and donor site is still con-
troversial. Some studies on human ASCs isolation 
failed to show any difference in adipose tissue 
native stem/stromal cell concentration, preva-
lence, or yield by gender. However, another study 
suggested that men might have a higher yield 
compared to women [36]. Likewise, the ideal 
donor site for fat harvest is yet to be defined.

Some studies [37–39] showed that fat from 
the lower abdomen and medial thighs has higher 
yield compared to the upper abdomen, trochan-
teric region, knees, and flanks but similar differ-
entiation potential. However, previous studies 
suggest that the choice of donor site has little 
effect on fat graft outcomes and the choice should 
be based on ease and safety of access to the tissue 
[30]. Other parameters, such as diet, lifestyle, 
drug consumption, and smoke and alcohol habit, 
should be also investigated to identify a possible 
influence on the pre-regenerative properties of 
adipose-derived cells or products.

3.4	 �The Rationale for Using 
Injections of Culture-
Expanded ASCs or Adipose-
Derived Products

Both ASCs and adipose-derived products can be 
delivered mainly with two approaches, which 
imply different mechanisms of action. The first 
one relies on the seeding of cells/SVF or micro-
fat on scaffolds to generate tissue and organs, and 
it is typically used in association with surgery, 
such as repair of focal chondral lesion or tendon 
rupture, as well as treatment of critical bone 
defects. Cells/SVF or microfat are seeded on a 
support (scaffold) and can exert their function by 
both paracrine regulations of the microenviron-
ment and direct differentiation into tissue-specific 
cells, albeit not complete. The second approach 
relies on the direct delivery of cells/SVF or micro-
fat to damaged sites, typically by injections or 
infusions. In this case, many findings suggest that, 
despite still being a valid model in different appli-

cations [40], the direct cell trans-differentiation 
mechanism would not be the main responsible for 
the benefits observed after MSCs transplantation, 
but rather the therapeutic effect is related to the 
secretion of soluble factors able to regulate the 
cross-talk with resident cells [41]. However, in the 
absence of adequate support for attachment, cells 
alone  after injection on the site are generally 
stressed, sometimes leading to a rapid death [42]. 
In this view the delivery of cells within their 
niche, as it happens with SVF and even more 
with microfat, could protect them from this phe-
nomenon. Nevertheless, the initiation of the resto-
ration process is guaranteed by the initial 
cross-talk between stem/stromal cells and resi-
dent cells, and therefore their long term-survival 
at the site of injection is not a strict requirement 
for their functioning. The low engraftment rate 
documented in lung injury models or cardiac 
infarcts after MSCs infusion [43, 44], and studies 
demonstrating similar or even improved organ 
function upon infusion of MSC-derived condi-
tioned medium (MSC-CM) with respect to whole 
MSCs [45], are all supporting a paracrine role of 
MSCs. Therefore, the research interest is also 
shifting on the characterization of secreted fac-
tors, collectively termed as the “secretome.”

3.4.1	 �Paracrine Potential (Soluble 
Mediators and Exosomes/
Microvesicles)

The term secretome refers to the wide array of 
secreted factors, such as cytokines and chemo-
kines or lipids with trophic and immunomodula-
tory activities [46]. Since Caplan’s description 
of MSCs as “drugstores,” i.e., elements that rec-
ognize injury signals and became activated in 
order to release bioactive molecules able to mod-
ulate local immune response and to establish a 
regenerative microenvironment [47], a number 
of elements, such as trophic (anti-scarring, anti-
apoptotic, mitogenic, angiogenic), immunomod-
ulatory, and also antimicrobic factors, were 
identified in MSCs secretome [48]. Therefore, 
the traditional paradigm of MSCs as a “cell 
replacement tool” has been now enriched by a 
new vision of MSCs as “sensing cells” that inter-
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act with tissue progenitor cells through a para-
crine action, which stimulates the innate potential 
of the tissue in the repair and modulation of 
inflammatory and immune reactions. These fea-
tures have defined the rationale behind the use of 
MSCs as therapeutic tool in treating joint dis-
eases like osteoarthritis. Accordingly, MSCs 
were shown to modulate the function of the 
immune system typically dysregulated during 
joint inflammation, by suppressing B cells and 
inhibiting T cells proliferation, together with 
attracting regulatory T cells and promoting the 
release of anti-inflammatory factors [49]. Even 
more importantly, MSCs were reported to pro-
mote in macrophages the transition from pro-
inflammatory M1 to anti-inflammatory M2 
polarization, inhibiting the release of pro-
inflammatory cytokines (TNF-α and IL-1β), and 
augmenting the secretion of anti-inflammatory 
molecules (IL-10) [50]. As a consequence, polar-
ization switch may reduce the cartilage degen-
eration mediated by inflammatory macrophages 
[51]. Consistently, the effectiveness of native or 
culture-expanded ASCs (and related products) 
paracrine action was demonstrated on chondro-
cytes and tenocytes exposed to pathological con-
ditions, with results suggesting a restoration of 
tissue homeostasis [52, 53]. Then, a significant 
amount of research explored the possibility of 
modulating these factors through the adoption of 
different culturing conditions, paving the way 
for the development of acellular therapeutic 
interventions for autoimmune, inflammatory, 
and malignant diseases and tissue regeneration 
from cellular secretions derived from MSCs 
(Fig. 3.1).

Among all the components of the secretome, 
extracellular vesicles (EVs) were also identified 
as active entities [54]. EVs embed different type 
of molecules (DNA, mRNAs, miRNAs, pre-
miRNAs, ncRNAs, and proteins), can be found in 
different biological fluids, and are secreted by a 
wide range of cell types including MSCs [55]. 
The recent advent of omics techniques allowed a 
better characterization of these vesicles and fos-
tered research on their involvement in the regula-
tion of different biological processes [56]. 
Consistently, EVs from MSCs showed an immu-
nosuppressive role on many types of immune 

cells [57]. In specific, treatment of T cells in vitro 
resulted in a marked decrease in proliferation and 
downregulation of IFN-γ and TNF-α secretion 
[58], with inflammation efficiently suppressed 
in vivo [59]. Moreover, EVs from cultured ASCs 
had positive effects in skin regeneration and car-
diac, liver, and neuroprotection [60] with strong 
attractive properties as potential therapeutic can-
didates also in the orthopedic settings since the 
reported attenuation of the inflammatory response 
and the degeneration after both tendon or carti-
lage injury [61, 62].

Overall, although further studies involving the 
safety and duration of EVs therapeutic effect are 
needed, MSC-derived EVs are the most promising 
candidates for a rational design of next-generation 
cell-free MSC-based therapeutics mainly derived 
from adipose tissue. In fact, the use of EVs avoid 
potential safety concerns typical of cell-based 
approaches (i.e., tumorigenicity and undesired 
spontaneous differentiation). Considering their 
natural biogenesis process, EVs are generated 
with high biocompatibility, enhanced stability, and 
limited immunogenicity, which provide multiple 
advantages as drug delivery systems over tradi-
tional synthetic methods. In this context, EVs can 
penetrate the tissues and be bioengineered to 
enhance the targetability, avoiding off-target 
effects. In comparison with cell-based approaches, 
their manufacturing is also more competitive in 
terms of cost-effectiveness. In this perspective, 
few clinical trials of Phase I, II, and III have been 
opened in the last years, covering diseases such as 
macular holes (NCT03437759) or diabetes melli-
tus type 1 (NCT02138331) or ischemic stroke 
(NCT03384433) [63]. Rational and potential of 
extracellular vesicles—exosomes are reported 
more in detail in Chap. 11.

3.5	 �In Vitro and Preclinical 
Findings

As already mentioned, the interest in the use of 
ASCs and adipose-derived products such as SVF 
and microfat in musculoskeletal applications is 
dramatically increasing over the last years. In the 
following paragraph, we will comment on the 
most relevant findings of in  vitro preclinical 
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studies published so far for the treatment of joint 
lesions/degeneration, tendon and bone repair, as 
well as muscle lesions, to give the readers signifi-
cant insights about their mechanisms of action. 
Given the preclinical settings, most of the studies 
show the results of the use of culture-expanded 

ASCs, although some results are about the unpro-
cessed products. Up-to-date reviews and meta-
analysis can also provide the readers with the 
most recent papers about the clinical applications 
of both ASCs and SVF and microfat [17, 
64–66].
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Fig. 3.1  Adipose-derived products: applications and properties
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3.5.1	 �Focus on Culture-Expanded 
ASCs and SVF/Microfat 
in Joint Degeneration

Articular cartilage degeneration eventually gives 
rise to osteoarthritis (OA), the main cause of dis-
ability in developed countries [67]. The current 
conservative options may relieve symptoms but 
are ineffective in the restoration of the damaged 
tissues. Recently, innovative therapies for carti-
lage regeneration showed efficacy [68, 69], with 
particular regard to MSCs thanks to their immu-
nomodulatory and pro-regenerative potential 
[70].

Pivotal in vitro studies reported the ability of 
culture-expanded  ASCs to induce chondrocyte 
proliferation and extracellular matrix production, 
through their paracrine activity with anti-
inflammatory, anti-apoptotic, and chondrogenic 
properties [71].

Also, the potential of autologous ASCs infu-
sion for osteochondral defects treatment has 
been assessed in numerous animal models [72, 
73]. Interestingly, the successful regeneration of 
cartilage has also been reported with an alloge-
neic transplant of ASCs in a sheep OA model 
[74]. Similar results have been observed in a 
rabbit model, where ASCs infusion promoted 
histological healing [75]. Single intra-articular 
injections of ASCs have been tested in dogs 
with hip OA.  ASCs-treated animals were 
reported to have improved their condition [76] 
with improved limb function within 3  months 
from the procedure [77]. Conversely, the intra-
venous injection of ASCs in dogs with elbow 
OA failed to significantly improve the animals’ 
conditions [78].

For what concern adipose-derived products, in 
a model of goat osteochondral defect, the appli-
cation of SVF showed higher regeneration com-
pared to the controls. SVF-treated animals 
exhibited more extensive collagen type II, 
hyaline-like cartilage, and more tissue native-like 
content of glycosaminoglycan in the cartilagi-
nous layer. Moreover, in the defect regions, it has 
been observed more intense collagen type I stain-
ing [79]. Similar results have been obtained in a 
rat model of full-thickness cartilage defect treated 

with native stem/stromal cell-enriched microfat 
where it was able to effectively restore cartilage 
tissue [80]. A very interesting paper reports a 
direct comparison of cultured ASCs, SVF, and 
microfat for the treatment of OA in a rabbit model 
of bilateral transection of the anterior cruciate 
ligament. The rabbits were either left untreated or 
injected with culture-expanded ASCs or SVF or 
300μl of microfat. The analysis conducted at 2- 
and 4-month follow-ups showed no macroscopic 
differences among the groups. However, at both 
experimental times, microfat showed the most 
promising results with a more uniform cartilage 
staining and a smoother cartilage surface than the 
untreated group [81].

3.5.2	 �Focus on Culture-Expanded 
ASCs and SVF/Microfat 
in Tendon Repair

Tendon tissue has poor healing potential, given 
by the limited cellular content and vasculariza-
tion. Thus, the response to treatment is generally 
low, and prolonged recovery is needed [82]. In 
addition, spontaneous tendon repair often fails in 
adequately restoring the structural and molecular 
composition of the tissue, often resulting in scar 
tissue rich in collagen type III, more vulnerable 
to injuries and relapses [83]. Surgical repair also 
showed frequent relapses. Conservative treat-
ments were able to improve symptoms, but none 
of them provided a long-term solution [84], and 
therefore, the application of ASCs or adipose 
tissue-derived products has been explored for 
tendon regeneration.

In vitro models demonstrated that the co-
culture of primary tenocytes and ASCs could 
drive the differentiation of the latter into teno-
cytes in vitro [85, 86]. In vivo, in a mice tendon 
repair model, the local administration of ASCs 
has been reported to accelerate the tendon heal-
ing process through differentiation of ASCs into 
tenocytes, and by increasing the expression of 
angiogenic growth factors [87]. Similar results 
were obtained on a rabbit calcaneal tendon injury 
model, which showed that the application of 
ASCs associated with platelet-rich plasma 
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increased the resistance of tendons as well as the 
amount of collagen type I, VEGF, and FGF [88]. 
More recently, using a rat tendinopathy model, 
the application of ASCs significantly improved 
the pathological picture [89]. ASCs have also 
been used on racehorses suffering from superfi-
cial flexor digitorum longus tendon (SFDLT) 
lesions. The injection of ASCs significantly 
improved healing, with treated horses showing 
shorter periods of lameness and better organiza-
tion of collagen fibers in the injured tendon [90]. 
Similarly, in a horse model of collagenase-
induced SFDLT lesions, the administration of 
ASCs resulted in a better organization of colla-
gen fibers and a reduction of the inflammatory 
infiltrate. Besides, the ultrasound evaluation 
showed a lack of lesion progression compared to 
the control group [91].

Analyzing the effect of uncultured adipose tis-
sue products, some authors reported that in vitro 
microfat significantly increased the proliferation 
rate of tendon progenitor cells as well as the 
expression of VEGF, which is crucial for the neo-
vascularization of the tissue during the healing 
process [92]. In a similar experimental model, it 
was also demonstrated that microfat was effec-
tively able to counteract the detrimental effect of 
experimentally induced inflammation in co-
cultures with autologous tenocytes [53]. 
Likewise, in a rotator cuff tear model in rabbits, 
the application of native stem/stromal cell-
enriched SVF caused a significant improvement 
in few physiological parameters, and it acceler-
ated the transformation of collagen fibers from 
type III to type I, the crucial step of repaired tis-
sue maturation [93].

3.5.3	 �Focus on Culture-Expanded 
ASCs and SVF/Microfat 
in Bone Repair

Bone fractures and segmental bone defects are a 
significant source of patient morbidity and place 
a substantial economic burden on the healthcare 
system. Generally, after damage, bone can regen-
erate itself, but in the case of significant loss of 
tissue, surgery with bone grafts or bone substi-

tutes is required. These approaches may be char-
acterized by long immobilization periods, donor 
site morbidity (in case of autologous graft), mus-
cular atrophy, and potential complications such 
as infection, pain, or hemorrhage [94, 95] that 
may lead to incorrect graft integration, resorp-
tion, and eventually relapses [96]. Therefore, 
potential applications of ASCs in this context 
have then been explored [95, 97, 98].

In vitro studies have reported, under specific 
stimuli, the ability of ASCs to differentiate into 
osteocytes, unequivocally showing markers of 
the mature tissue [99, 100]. Interestingly, it has 
been reported that osteogenic induction might 
not be mandatory as the primary function of 
adhesion, migration, proliferation, and differen-
tiation can also be achieved using native ASCs 
[101, 102]. Animal models mainly relied on the 
use of scaffolds populated by ASCs, with few 
applications involving ASCs injection. Some 
studies explored the use of ASCs and osteocyte-
induced ASCs in the context of distraction osteo-
genesis (DO) [94]. In a rabbit model of tibial 
defect, the authors reported a shorter consolida-
tion period using osteo-differentiated or undiffer-
entiated stem/stromal cells compared to the 
control, but osteo-differentiated ASCs seem to 
perform better in terms of tissue density and 
quality [103]. Similarly, in a rat model of DO, the 
authors demonstrated that the injection of ASCs 
resulted in a significantly higher density and frac-
ture strength after 6 weeks, supported by molecu-
lar evidence as ASCs’ derived tissue expressed 
osteogenic markers [104].

For what concern the uncultured adipose tis-
sue product, mechanical generated-SVF (mSVF) 
and enzymatic generated-SVF (eSVF) were com-
pared to test whether the mechanical approach 
influences the biological features and functions 
of SVF.  Albeit less efficient in terms of cell 
recovery and CFU-F than eSVF (five times less), 
mSVF preserved the functions of cell popula-
tions within the adipose tissue, with similar 
osteo-differentiation commitment and similar 
release of VEGF, HGF, IGF-1, and PDGF-bb, 
involved in pathways mediating osteochondral 
repair and cell migration, and of the anti-
inflammatory cytokine IL-10 [105].
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3.5.4	 �Focus on Culture-Expanded 
ASCs and SVF/Microfat 
in Muscle Repair

Among musculoskeletal tissues, the muscle is 
more prone to regenerate after injury, thanks to 
the presence of satellite cells, a subpopulation 
with stem cell-like properties [106, 107]. 
Although these cells are able to regenerate mus-
cle tissue after strains, tears, or lacerations, they 
fail to resolve conditions of greater damage with 
significant muscle tissue loss, indicated as volu-
metric muscle loss injuries [108].

As per the other tissues, the use of ASCs for 
muscle regeneration and repair may rely on direct 
differentiation or on the release of paracrine 
effectors. Indeed, ASCs are able to differentiate 
in  vitro into skeletal myoblasts and myotubes, 
and they maintain myogenic potential also after 
expansion [109], but if properly stimulated using 
dedicated scaffold, they may also differentiate 
in vivo [110].

ASCs with specific myogenic properties, and 
able of homing to the injured muscle tissues, 
have been obtained [111] and used in a mice 
model of Duchenne muscular dystrophy, with 
promising results [112].

The potential of ASCs to regenerate the skeletal 
muscle showed to be comparable to muscle-
derived progenitor cells in a volumetric muscle 
loss injury murine model employing tissue-
engineered muscle repair (TEMR) construct [113].

Cultured homologous ASCs injected into 
injured soleus muscles showed an acceleration of 
skeletal muscle repair in rat [114].

Similar results were obtained when human 
ASCs were implanted in a model of murine hind 
limb ischemia: an improvement in the functional-
ity of the damaged limb occurred faster than in 
the control mice. In this work, the authors hypoth-
esize a paracrine action of IL-6 released from 
ASCs, leading to stimulation of M2 macrophages 
and inducing muscle repair through neovascular-
ization [115].

The paracrine activity of ASCs for muscle 
regeneration has been investigated specifically in 
different animal models. The conditioned media 
of ASCs have been suggested to improve muscle 

tissue healing in a rabbit model of critical limb 
ischemia [116]. The effects of ASC whole secre-
tome or isolated extracellular vesicle fraction 
were evaluated in an in vivo cardiotoxin-induced 
skeletal muscle injury model, and this study dem-
onstrated that both extracellular vesicles and sol-
uble molecules released in the ASC secretome 
promote muscle regeneration acting in synergis-
tic manner [117].

Interestingly, the rat ASCs paracrine activity 
for muscle regeneration can be improved by pre-
treatment of stem/stromal cells with IL-4 and 
SDF-1. Indeed, ASCs treated with these factors 
were able to improve muscle structure and func-
tion and decrease fibrosis in a rat model of skel-
etal muscle injury [118].

In an attempt to determine the importance of 
the direct use of ASCs, ASCs and ASC-
conditioned medium were used in type I collagen 
hydrogel, and the action of these constructs were 
directly compared in volumetric muscle loss rat 
model. The results indicated that hydrogels bear-
ing ASCs or conditioned medium only were able 
to induce similar increase of angiogenesis and 
myogenesis, as well as M2 stimulation, suggest-
ing that both elements retain an immunomodula-
tory role on macrophages transition. A decrease 
of inflammation and collagen deposition was also 
observed, resulting in improved muscle repair 
[119], confirming once more the pivotal ASCs 
paracrine role.

3.6	 �Conclusions

The rationale for the use of adipose-derived stem/
stromal cells and adipose-derived products such 
as SVF and microfat, as well as their safety pro-
file, for the treatment of several musculoskeletal 
conditions is strong and well documented in both 
in vitro and preclinical studies. The possibility of 
local survival and differentiation of tissue-derived 
cells and the formation of new tissues is theoreti-
cally appealing but as yet unproven. Moreover, 
this effect could be mainly observed when the 
adipose-derived cells or products are associated 
with surgery and delivered locally at the injury/
defect site. Paracrine action mediated by soluble 
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factors as well as by exosomes and microvesicles 
may play a key role in ASCs-based therapies by 
modulating the microenvironment, especially in 
a setting of injury or degeneration. In some cases, 
ASCs or the adipose tissue-derived products may 
act not only on symptoms relief but also as 
disease-modifying agents, possibly reverting the 
pathological progression. The current efforts of 
the scientific community are aimed to improve 
the knowledge of the most effective strategies to 
improve the therapeutic effects of these 
approaches. In particular, cell priming, that is the 
modulation of the secretory ability of cells 
through the use of cytokines and growth factors, 
hypoxia, pharmacological drugs, biomaterials, or 
different culture conditions, has been indicated as 
one of the most promising ones. In fact, an appro-
priate priming can modulate the cell secretory 
profile so that the molecule cargo is able to exert 
a specific therapeutic effect for each different 
pathology. Regardless of the mechanism of 
action, the optimization of dose and delivery 
strategies to achieve both predictable and durable 
positive effects needs to be further evaluated in 
high-quality clinical studies. While ASCs have 
the undisputable advantage of being homoge-
neous and therefore more controlled, SVF and 
microfat are easier to use and do not have to fol-
low strict regulatory pathways. Overall, both are 
associated with pros and cons, and only further 
research studies will allow to identify the best 
approach for the different musculoskeletal 
pathologies and the different type of patient.
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